# Lengthy, Lengthier, Lengthiest!

**Geometry**Level 3

Consider a circle \(\Omega(x,y): x^2+y^2-6x-12y-405=0\) . Let \(P \equiv (13,26)\).Let \(t_1 , t_2\) be the tangents from \(P\) to \(\Omega\) . Let \(t_1 , t_2 \cap \Omega =\{A,B\}\) respectively . If \(A \equiv (x_{A} , y_{A} ) , B \equiv (x_{B} , y_{B})\) ,

Find \(x_{A} + y_{A}+x_{B} + y_{B}\).