Forgot password? New user? Sign up
Existing user? Log in
(20160)+(20164)+(20168)+⋯+(20162016)=x+x2.\dbinom{2016}{0}+\dbinom{2016}{4}+\dbinom{2016}{8}+\cdots +\dbinom{2016}{2016} = x+x^2.(02016)+(42016)+(82016)+⋯+(20162016)=x+x2.
If x=abx = a^bx=ab for positive integers aaa and bbb, find the smallest possible a+ba+ba+b.
Problem Loading...
Note Loading...
Set Loading...