Forgot password? New user? Sign up
Existing user? Log in
Let f(x)=x4+ax3+bx2+cx+df(x)=x^4+ax^3+bx^2+cx+df(x)=x4+ax3+bx2+cx+d be a polynomial with real coefficients and real zeroes. If ∣f(i)∣=1|f(i)|=1∣f(i)∣=1, where i=−1i=\sqrt{-1}i=−1, then find the value of a+b+c+d.a+b+c+d.a+b+c+d.
Problem Loading...
Note Loading...
Set Loading...