\[\large \displaystyle \int \dfrac{\sin^4 x + \cos^4 x}{\sin^3 x + \cos^3 x} \, dx \]

If the above integral can be represented as

\[\sin x - \cos x + \frac{\sqrt{a}}{b} \cdot \operatorname{artanh} \left( \frac{ \tan \left( \frac x2 \right) - 1 }{\sqrt{a}} \right) + \frac ab \cdot \arctan \left( \cos x - \sin x \right) + C, \]

where \(a\) and \(b\) are coprime positive integers with \(a\) square free, then evaluate \(a+b\).

\(\)

**Clarification:** \(C\) denotes the arbitrary constant of integration.

×

Problem Loading...

Note Loading...

Set Loading...