Let's do some calculus! (5)

Calculus Level 4

f(x)=x(1+xn)1/n n2g(x)=fffff occurs n times(x)\begin{aligned} f(x) & =\dfrac{x}{{\left(1+x^{n}\right)}^{{1}/{n}}} & \forall ~n \ge 2 \\ g(x) & =\underbrace{f \circ f \circ f \circ \cdots f}_{f \text{ occurs } n \text{ times}}\left(x\right) \end{aligned}

For functions ff and gg as defined above, which of the following is an antiderivative of xn2g(x)dx\displaystyle \int x^{n-2} g(x) \, dx ?

Clarification: CC denotes the arbitrary constant of integration.


For more problems on calculus, click here.
×

Problem Loading...

Note Loading...

Set Loading...