If

\[\displaystyle\int_{-\infty} ^{\infty}\displaystyle\int_{-\infty} ^{\infty}\displaystyle\int_{-\infty} ^{\infty} e^{-x^2-y^2-z^2}\ dx \ dy \ dz\]

Can be expressed as

\[\ Pi(x) \times \sqrt{k} \pi\]

Find the value of \(k\)

\[\ Pi(x) =\displaystyle\int_0^{\infty} e^{-x^{2}} \ dx\]

×

Problem Loading...

Note Loading...

Set Loading...