# Limit (1)

**Algebra**Level pending

\[ \lim_{x\to 0 } \dfrac{ 2(1+x)^{1/x} - e(2-x)}{2x^2} \]

If the value of the limit above is equal to \( \dfrac{A e^C}B\), where \(A,B\) and are positive integers, find \(A+B+C\).

\[ \lim_{x\to 0 } \dfrac{ 2(1+x)^{1/x} - e(2-x)}{2x^2} \]

If the value of the limit above is equal to \( \dfrac{A e^C}B\), where \(A,B\) and are positive integers, find \(A+B+C\).

×

Problem Loading...

Note Loading...

Set Loading...