Forgot password? New user? Sign up
Existing user? Log in
True or False?
For any real k>0,k >0,k>0, given the recursive expression xn=xn−1+kxn−1+1,x_{n} = \frac{x_{n-1}+k}{x_{n-1}+1},xn=xn−1+1xn−1+k, if x0=0,x_0 = 0,x0=0, then limn→∞xn=k.\displaystyle \lim_{n\to\infty} x_n= \sqrt{k}.n→∞limxn=k.
Problem Loading...
Note Loading...
Set Loading...