# Limit of an Integral!

**Calculus**Level 5

\[\large{ \lim_{n \to \infty} n \int_1^e x^2 (\ln(x))^n \, dx}\]

For integer \(n\), let \(L \) denote the value of the limit above. Find the value of \(\ln(L ) \).

\[\large{ \lim_{n \to \infty} n \int_1^e x^2 (\ln(x))^n \, dx}\]

For integer \(n\), let \(L \) denote the value of the limit above. Find the value of \(\ln(L ) \).

×

Problem Loading...

Note Loading...

Set Loading...