Forgot password? New user? Sign up
Existing user? Log in
f(x)=cos−1(cosx)g(x)={x}−{x}2\displaystyle{f\left( x \right) =\cos ^{ -1 }{ \left( \cos { x } \right) } \\ g\left( x \right)=\sqrt { \left\{ x \right\} -{ \left\{ x \right\} }^{ 2 } } \\ }f(x)=cos−1(cosx)g(x)={x}−{x}2
For f:R→Rf: \mathbb{R}\rightarrow \mathbb{R} f:R→R and g:R→R g:\mathbb{R}\rightarrow \mathbb{R}g:R→R
Find limx→∞∫0xf(t) dt∫0xg(t) dt\displaystyle{\lim _{ x\rightarrow \infty }{ \frac { \displaystyle \int _{ 0 }^{ x }{ f\left( t \right) \ \mathrm dt } }{ \displaystyle \int _{ 0 }^{ x }{ g\left( t \right) \ \mathrm dt } } } }x→∞lim∫0xg(t) dt∫0xf(t) dt
Problem Loading...
Note Loading...
Set Loading...