Forgot password? New user? Sign up

Existing user? Log in

Let $\{x_n\}$ be a sequence such that $x_1=1,\ x_nx_{n+1}=2n$ for $n\ge 1$.

Find $\displaystyle \lim_{n\to\infty} \dfrac{|x_{n+1}-x_n|}{\sqrt{n}}.$

Problem Loading...

Note Loading...

Set Loading...