$\large \displaystyle f(n, \theta) = \prod_{r=1}^n \left [1 - \tan^2 \left ( \frac \theta {2^r} \right ) \right]$

Suppose we have a function of $f(n,\theta)$ as above, find the value of $\displaystyle \lim_{\theta\to 0}\lim_{n\to \infty} f(n, \theta)$.

×

Problem Loading...

Note Loading...

Set Loading...