\[ \lim_{x\to0} \dfrac{ f'(x) }{ f'''(x) + \frac{\sin x}{\sqrt[3]{x}} + e^x} \]

Let \(f\) be a differentiable function on \(\mathbb R\) with continuous derivatives til order 4. Suppose \(f(-x) = f(x) \forall x \in \mathbb R \). Compute the limit above.

×

Problem Loading...

Note Loading...

Set Loading...