# Line integral

**Calculus**Level 4

Find \(\lfloor10000I\rfloor\), where:

\[I=\oint_Cf(z)\ \mathrm dz\]

where \(C\) is the square of vertices \(1+i\), \(1+3i\), \(3+i\), \(3+3i\), and \(f(z)=\dfrac{e^z}{z^4-1}\).

Find \(\lfloor10000I\rfloor\), where:

\[I=\oint_Cf(z)\ \mathrm dz\]

where \(C\) is the square of vertices \(1+i\), \(1+3i\), \(3+i\), \(3+3i\), and \(f(z)=\dfrac{e^z}{z^4-1}\).

×

Problem Loading...

Note Loading...

Set Loading...