Logarithm

Algebra Level 3

Find the smallest positive integer \(k\) such that \[\dfrac{1}{\log_{3^k}2015!}+\dfrac{1}{\log_{4^k}2015!}+\ldots+\dfrac{1}{\log_{2015^k}2015!}>2015\]

×

Problem Loading...

Note Loading...

Set Loading...