There is a common integration trick when evaluating indefinite integrals, namely, $\displaystyle \int e^{x} \left( f(x)+f^{'}(x) \right) \, dx = e^{x}f(x)+C$.

Hence, or otherwise, calculate

$\large \int _{0}^{1} e^{x}\left(256x^{15}-x^{17}-x^{16}\right) \, dx .$

**Clarification:** $C$ denotes the arbitrary constant of integration.