Looks like cauchy!

Algebra Level 5

For all positive integers \(k\) , define \(f(k)=k^2+k+1\) . Compute the largest positive integer \(n\) such that \[2015f(1^2)f(2^2)\cdots f(n^2)\geq \Big(f(1)f(2)\cdots f(n)\Big)^2.\]

×

Problem Loading...

Note Loading...

Set Loading...