Forgot password? New user? Sign up

Existing user? Log in

For all positive integers $k$ , define $f(k)=k^2+k+1$ . Compute the largest positive integer $n$ such that $2015f(1^2)f(2^2)\cdots f(n^2)\geq \Big(f(1)f(2)\cdots f(n)\Big)^2.$

Problem Loading...

Note Loading...

Set Loading...