Mad Binomial Sum

\[ \large f(n) = \sum_{m=1}^n m^2 \dbinom nm \]

If the value of \(f(2016) \) can be expressed as \(A(A+1) 2^B \), where \(A\) and \(B\) are positive integers, find \(A+B\).

\[\]Notation: \( \dbinom MN \) denotes the binomial coefficient, \( \dbinom MN = \dfrac{M!}{N!(M-N)!} \).

×

Problem Loading...

Note Loading...

Set Loading...