Forgot password? New user? Sign up
Existing user? Log in
Given that f(x)=a0+a1x+a2x2+…+anxnf(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n f(x)=a0+a1x+a2x2+…+anxn, and ∣f(x)∣≤∣ex−1−1∣ |f(x) | \leq | e^{x-1} - 1 | ∣f(x)∣≤∣ex−1−1∣ for all x≥0x \geq 0 x≥0. Find the value of yy y if y≥∣a1+2a2+3a3+…+nan∣ y \geq |a_1 + 2a_2 + 3a_3 + \ldots + n a_n | y≥∣a1+2a2+3a3+…+nan∣.
Problem Loading...
Note Loading...
Set Loading...