Let
f(x)=b0xn+b1xn+1+⋯+blxn+la0xm+a1xm+1+⋯+akxm+k,
where a0=0,b0=0, and m,n∈N.
Then given (A), (B), (C), or (D), x→0limf(x) equals which of (1), (2), (3), and (4)?
Match the columns:
Column-I | Column-II |
(A) if m>n | (1) ∞ |
(B) if m=n | (2) −∞ |
(C) if m<n, n−m is even, and b0a0>0 | (3) b0a0 |
(D) if m<n, n−m is even, and b0a0<0 | (4) 0 |
Note: For example, if (A) correctly matches (1), (B) with (2), (C) with (3), and (D) with (4), then answer as 1234.