Forgot password? New user? Sign up
Existing user? Log in
17292=1729⋅1729…(1)17292−17292=1729⋅1729−17292…(2)(1729+1729)(1729−1729)=1729(1729−1729)…(3)(1729+1729)⋅0=1729⋅0…(4)3458=1729\begin{aligned} 1729^2=&1729 \cdot 1729 \quad & \ldots (1) \\ 1729^2-1729^2=&1729 \cdot 1729-1729^2 \quad & \ldots (2) \\ (1729+1729)(1729-1729)=& 1729(1729-1729) \quad & \ldots (3) \\ (1729+1729)\cdot \cancel{0}=&1729\cdot \cancel{0} \quad & \ldots (4) \\ 3458=&1729 \end{aligned} 17292=17292−17292=(1729+1729)(1729−1729)=(1729+1729)⋅0=3458=1729⋅17291729⋅1729−172921729(1729−1729)1729⋅01729…(1)…(2)…(3)…(4)
The above shows my attempt to prove that 3458=1729 3458 = 1729 3458=1729. In which of these steps did I make a flaw in my logic?
Problem Loading...
Note Loading...
Set Loading...