Forgot password? New user? Sign up
Existing user? Log in
Let 0<a<b<π20<a<b<\frac { \pi }{ 2 } 0<a<b<2π. If f(x)=∣sinxsinasinbcosxcosacosbtanxtanatanb∣f\left( x \right) =\left| \begin{matrix} \sin { x } & \sin { a } & \sin { b } \\ \cos { x } & \cos { a } & \cos { b } \\ \tan { x } & \tan { a } & \tan { b } \end{matrix} \right| f(x)=∣∣∣∣∣∣sinxcosxtanxsinacosatanasinbcosbtanb∣∣∣∣∣∣ , then minimum possible number of roots of f′(x)=0f'\left( x \right) =0f′(x)=0 lying in (a,b)(a,b)(a,b) is:
Problem Loading...
Note Loading...
Set Loading...