# Matrices 1

**Calculus**Level 2

Let \(0<a<b<\frac { \pi }{ 2 } \). If \(f\left( x \right) =\left| \begin{matrix} \sin { x } & \sin { a } & \sin { b } \\ \cos { x } & \cos { a } & \cos { b } \\ \tan { x } & \tan { a } & \tan { b } \end{matrix} \right| \) , then minimum possible number of roots of \(f'\left( x \right) =0\) lying in \((a,b)\) is: