What is the value of the dimension \(n\) that maximizes the volume of unit \(n\)-ball \[ \left\{ \left( x_1,x_2,\cdots,x_n \right) \in\mathbb{R}^n\, \mid \, x_1^2+x_2^2+\cdots+x_n^2\le 1 \right\}?\]

**Hint:** The volume of \(n\)-ball of radius \(R\) is
\[V_n(R)=\frac{\pi^{\frac n2}}{\Gamma \left(\frac n2+1\right)}R^n,\]
where \(\Gamma(\cdot)\) denotes the gamma function.

×

Problem Loading...

Note Loading...

Set Loading...