Maximum Sum Value

Given 10 non-negative reals such that \( a_i \leq i \) and \((1-a_1)(2-a_2)\ldots(9-a_9)(10-a_{10}) \geq 1\), what is the maximum value of \(a_1 + a_2 + \cdots + a_9 + a_{10}\)?

×

Problem Loading...

Note Loading...

Set Loading...