Forgot password? New user? Sign up
Existing user? Log in
AB5×5DB5 \large{\begin{array}{cccccc} && & & A & B&5 \\ \times && & & & &5\\ \hline & & & & D & B&5\\ \hline \end{array}} ×ADBB555
Let A,BA,BA,B and DDD be distinct digits that satisfy the cryptogram above.
Find the minimum value of A+B+D+5A+B+D + 5A+B+D+5.
Clarification: Both AAA and DDD are a leading digit, so neither can be zero.
Problem Loading...
Note Loading...
Set Loading...