Forgot password? New user? Sign up
Existing user? Log in
fn(x)=xxxx⋅⋅⋅x⏟ number of x’s = n\large f_n(x) = \Large \underbrace{x^{x^{ x^{x^{\cdot^{\cdot^{\cdot ^x}}}}}}}_{\text{ number of } x \text{'s = } n} fn(x)= number of x’s = nxxxx⋅⋅⋅x
What is limx→0+(f2016(x)+f2017(x)+f2018(x))? \displaystyle \lim_{x\to0^+} \big(f_{2016} (x) + f_{2017} (x) + f_{2018}(x)\big)? x→0+lim(f2016(x)+f2017(x)+f2018(x))?
Problem Loading...
Note Loading...
Set Loading...