Minkowski Inequality

Algebra Level 5

a3+1b33+b3+1c33+c3+1a33\large \sqrt[3]{a^3+\dfrac{1}{b^3}}+\sqrt[3]{b^3+\dfrac{1}{c^3}}+\sqrt[3]{c^3+\dfrac{1}{a^3}}

Given that a,b,ca,b,c are positive reals satisfying a+b+c32a+b+c\le \frac{3}{2}. Determine the minimum value of the expression above to 3 decimal places.

A solution using Minkowski Inequality will be very much appreciated!

×

Problem Loading...

Note Loading...

Set Loading...