If a positive real valued continuously differentiable functions \(f\) on the real line such that for all \(x\)

\[\large\ f^{ 2 }\left( x \right) = \int _{ 0 }^{ x }{ \left( { \left( f\left( t \right) \right) }^{ 2 } + { \left( f'\left( t \right) \right) }^{ 2 } \right) dt } + { e }^{ 2 }\]

is satisfied.

Then find the value of \(\large\ f(-1)\).

×

Problem Loading...

Note Loading...

Set Loading...