Mother of Summations!

\[\large\displaystyle\sum_{{z}=1}^{2016}\sum_{{y}=1}^z\cdots\sum_{{c}=1}^d\sum_{{b}=1}^c\sum_{{a}=1}^b(1)\]

If the above expression can be simplified to \(\large\dbinom{{\alpha}}{{\beta}}\) then compute

\[\large \sqrt{80{\beta}-{\alpha}+10} . \]

Notation: \( \binom MN \) denotes the binomial coefficient, \( \binom MN = \frac{M!}{N!(M-N)!} \).

×

Problem Loading...

Note Loading...

Set Loading...