\[\large\displaystyle\sum_{{z}=1}^{2016}\sum_{{y}=1}^z\cdots\sum_{{c}=1}^d\sum_{{b}=1}^c\sum_{{a}=1}^b(1)\]
If the above expression can be simplified to \(\large\dbinom{{\alpha}}{{\beta}}\) then compute
\[\large \sqrt{80{\beta}-{\alpha}+10} . \]
Notation: \( \binom MN \) denotes the binomial coefficient, \( \binom MN = \frac{M!}{N!(M-N)!} \).
Problem Loading...
Note Loading...
Set Loading...