Forgot password? New user? Sign up
Existing user? Log in
∑z=12016∑y=1z⋯∑c=1d∑b=1c∑a=1b(1)\large\displaystyle\sum_{{z}=1}^{2016}\sum_{{y}=1}^z\cdots\sum_{{c}=1}^d\sum_{{b}=1}^c\sum_{{a}=1}^b(1)z=1∑2016y=1∑z⋯c=1∑db=1∑ca=1∑b(1)
If the above expression can be simplified to (αβ)\large\dbinom{{\alpha}}{{\beta}}(βα) then compute
80β−α+10.\large \sqrt{80{\beta}-{\alpha}+10} . 80β−α+10.
Notation: (MN) \binom MN (NM) denotes the binomial coefficient, (MN)=M!N!(M−N)! \binom MN = \frac{M!}{N!(M-N)!} (NM)=N!(M−N)!M!.
Problem Loading...
Note Loading...
Set Loading...