Forgot password? New user? Sign up

Existing user? Log in

The sequence $\{a_n\}$ satisfies $a_0=1, a_1=213,$ and $a_n=2a_{n-1}+a_{n-2}$ for all $n \geq 2$. Let $S = \sum_{i=1}^{\infty} \frac{a_{i-1}}{a_i^2-a_{i-1}^2}.$ What is the value of $\frac{1}{S}$?

This problem is shared by Muhammad A.

Problem Loading...

Note Loading...

Set Loading...