My Coincidence encounter with \(3\), \(4\), \(5\) and \(6\)

\[\displaystyle\begin{align}{\color{blue}66\times66}= {\color{red}4}3{\color{red}5}6\end{align}\]

\[\displaystyle\begin{align}{\color{blue}666\times666} = {\color{red}44}3{\color{red}55}6\end{align}\]

\[\displaystyle\begin{align}{\color{blue}6666\times6666} = {\color{red}444}3{\color{red}555}6\end{align}\]

\[\displaystyle\begin{align}{\color{blue}66666\times66666} = {\color{red}4444}3{\color{red}5555}6\end{align}\]

In the above multiplications it is observed that increasing the numbers of \({\color{blue}6}\) at different place values also the numbers of \({\color{red}4}\)and \({\color{red}5}\) increases less by \(1\). Are the above such multiplications always true ?

×

Problem Loading...

Note Loading...

Set Loading...