Find the sum of all positive integers \((a,b)\) such that

\[\small{\small{\sqrt{\dfrac{(-a+b+\sqrt{a^2+b^2})(a-b+\sqrt{a^2+b^2})(a+b-\sqrt{a^2+b^2})}{4}\sqrt{\dfrac{(-a+b+\sqrt{a^2+b^2})(a-b+\sqrt{a^2+b^2})(a+b-\sqrt{a^2+b^2})}{4}\sqrt{\dots\dots}}}=4(a+b+\sqrt{a^2+b^2})}}.\]

**Details and Assumptions**

- \((a,b)\) is same as \((b,a)\), no need to add twice.
- This is inspired by Mursalin Habib.

×

Problem Loading...

Note Loading...

Set Loading...