Nice function...

Algebra Level 5

Let \(f : \mathbb N \mapsto \mathbb N\) be a function such that \(f (n + 1) > f (n)\) and \(f (f (n)) = 3n\) for all \(n\in\mathbb{N}\). Evaluate \(f (2001)\).

×

Problem Loading...

Note Loading...

Set Loading...