Forgot password? New user? Sign up

Existing user? Log in

Let $f : \mathbb N \mapsto \mathbb N$ be a function such that $f (n + 1) > f (n)$ and $f (f (n)) = 3n$ for all $n\in\mathbb{N}$. Evaluate $f (2001)$.

Problem Loading...

Note Loading...

Set Loading...