# Nice set of equations?

**Calculus**Level pending

\((ax^b)'=cx^d\), where \(a\neq b\neq c\neq d\) and a,b,c,d are integers where \(0 \leq a,b,c,d\leq 9\)

There should be 3 sets of values of a, b, c and d. Let the first set be \({a_1, b_1, c_1, d_1}\), the second set be \({a_2, b_2, c_2, d_2}\) and the last set be \({a_3, b_3, c_3, d_3}\).

Substitute the values into the equations \(a_nx+b_ny+c_nz=d_n\) where n=1, 2, 3.

Solve for x, y and z.

x+y+z=?