Forgot password? New user? Sign up
Existing user? Log in
If a,b,c>0a, b, c>0a,b,c>0 and a+b+c=1a+b+c=1a+b+c=1, the minimum value of (a+1a)10+(b+1b)10+(c+1c)10(a+\frac{1}{a})^{10}+(b+\frac{1}{b})^{10}+(c+\frac{1}{c})^{10}(a+a1)10+(b+b1)10+(c+c1)10 can be expressed as 10d3e\frac{10^{d}}{3^{e}}3e10d where ddd and eee are positive integers. Find d+ed+ed+e
Problem Loading...
Note Loading...
Set Loading...