\[\large\int { \{ { \log { (\frac { 1+\sin { 2x } }{ 1-\sin { 2x } } ) } }^{ { (\cos { x) } }^{ 2 } }+\log { (\frac { \cos { 2x } }{ 1+\sin { 2x } } } ) } \} dx\]

if the result can be represented as \[\large\frac { \sin { 2x } }{ A } \log { (\frac { cosx+sinx }{ cosx-sinx } } )+Q\log { \left| cos2x \right| } \] find A*Q ignore constant of integration

×

Problem Loading...

Note Loading...

Set Loading...