\[\large \sum _{ n=1 }^{ \infty }{ \dfrac { { n }^{ 3} }{ { 3 }^{ n }\cdot n! } } =\dfrac { c~\sqrt [ a ]{ e } ~\pi^{d-1}}{ b } \]

If the equation above holds true for positive integers \(a\), \(b\), \(c\), and \(d\), while \(c\) and \(b\) are coprime, find \(a+b+c+d\).

**Clarification**: \(e \approx 2.71828\) denotes the Euler's number.

Also try part-2 here.

×

Problem Loading...

Note Loading...

Set Loading...