\[\large{ \begin{cases} x+y+z=2 \\ xy+yz+zx=0.5 \\ xyz=4 \end{cases} }\]

Let \(x,y,z\) be complex numbers that satisfies the above system of equations. Define \(\omega\) as:

\[\large{\omega = \dfrac{1}{xy+z-1} + \dfrac{1}{yz+x-1} + \dfrac{1}{zx+y-1} }\]

Evaluate the value of \( \large{-18\omega}\) correct up to one place of decimal.

×

Problem Loading...

Note Loading...

Set Loading...