# Not your average table of operations

**Computer Science**Level 4

\(N=\overline { ABCDEFGHIJ} \)

(where \(A,B,C,D..J\) are the digits of \(N\)). Each digit of \(N\) is a number between \(0\) and \(9\) inclusive and all digits of \(N\) are different from each other.

What must be the value of \(N\) so that the three vertical and three horizontal operations in the table below are correct?

\(\begin{matrix} \overline { EDJH } & \div & \overline { JF } & = & \overline { AA } \\ - & \quad & + & \quad & + \\ \overline { EDB } & \times & \overline { I } & = & \overline { EHCG } \\ \quad = & \quad & = & \quad & = \\ \overline { EEID } & - & \overline { DJ } & = & \overline { EEAE } \end{matrix}\)

**Details and assumptions**

You may assue that only one value of \(N\) satisfies the constraints above.

**Your answer seems reasonable.**Find out if you're right!

**That seems reasonable.**Find out if you're right!

Already have an account? Log in here.