Not your average table of operations

Consider the 10-digit integer

N=ABCDEFGHIJN=\overline { ABCDEFGHIJ}

(where A,B,C,D..JA,B,C,D..J are the digits of NN). Each digit of NN is a number between 00 and 99 inclusive and all digits of NN are different from each other.

What must be the value of NN so that the three vertical and three horizontal operations in the table below are correct?

EDJH÷JF=AA++EDB×I=EHCG===EEIDDJ=EEAE\begin{matrix} \overline { EDJH } & \div & \overline { JF } & = & \overline { AA } \\ - & \quad & + & \quad & + \\ \overline { EDB } & \times & \overline { I } & = & \overline { EHCG } \\ \quad = & \quad & = & \quad & = \\ \overline { EEID } & - & \overline { DJ } & = & \overline { EEAE } \end{matrix}

Details and assumptions

You may assue that only one value of NN satisfies the constraints above.

×

Problem Loading...

Note Loading...

Set Loading...