Now it comes 11

111111\large \color{#3D99F6}{11}^{\color{#624F41}{11}^{\color{#20A900}{11}}}

What are the last two digits of the number above?


Bonus 1: Can you generalize this for 111111...11 number of 11’s =n?\underbrace{11^{11^{11^{.^{.^.{11}}}}} }_{\text{ number of } 11\text{'s }=\, n}?

Bonus 2: Try not to use Euler's totient function.

×

Problem Loading...

Note Loading...

Set Loading...