Forgot password? New user? Sign up
Existing user? Log in
∑m=1∞m3+(m2+1)2(m2+m)(m4+m2+1) \large \sum_{m=1}^\infty \frac{ m^3 + (m^2+1)^2}{ (m^2+m)(m^4+m^2+1) } m=1∑∞(m2+m)(m4+m2+1)m3+(m2+1)2
If the series above can be expressed as AB\frac ABBA for coprime positive integers AAA and BBB, find the value of A+BA+ BA+B.
Problem Loading...
Note Loading...
Set Loading...