Forgot password? New user? Sign up
Existing user? Log in
∑r=1∞r3+(r2+1)2(r4+r2+1)(r2+r)=ab\large \sum^\infty_{r=1} \frac{r^3+(r^2+1)^2}{(r^4+r^2+1)(r^2+r)} = \frac abr=1∑∞(r4+r2+1)(r2+r)r3+(r2+1)2=ba
The equation above holds true for coprime positive integers aaa and bbb. Find a+ba+ba+b.
Problem Loading...
Note Loading...
Set Loading...