A positive integer N has the decimal representation

\(N={ d }_{ 1 }{ d }_{ 2 }{ d }_{ 3 }{ d }_{ 4 }......{ d }_{ n }\)

such that ,

\(0\quad <\quad { d }_{ 1 }\quad \le \quad { d }_{ 2 }\quad \le \quad { d }_{ 3 }\quad .........\le \quad { d }_{ n }\)

\( d_k\) here represent a digit at \( (n-k)^{th} \) place.

Find the total number of numbers of this type which are less than \({ 10 }^{ 9 }\)

×

Problem Loading...

Note Loading...

Set Loading...