Forgot password? New user? Sign up
Existing user? Log in
For each integer n>1n>1n>1, let F(n)F(n)F(n) be the number of solutions to the equation sinx=sin(nx)\sin{x} = \sin{(nx)}sinx=sin(nx) on the interval [0,π][0,\pi][0,π]. What is ∑n=22007\displaystyle\sum_{n=2}^{2007}n=2∑2007F(n)F(n)F(n)?
Problem Loading...
Note Loading...
Set Loading...