Let \(N\) be the \(1500\)-digit string of decimal digits linked here.

Consider all substrings of \(N\) with length strictly greater than \(1.\) Let \(P\) be the number of these substrings that are palindromes (read the same forwards and backwards), and let \(L\) be the largest palindromic substring (converted to an integer). Compute the remainder when \(P + L\) is divided by \(1000.\)

EDIT: The number is:

```
845339512654353013973726529001291079167398839841139949030851696390946980101698124639149591440119733604468880607555560607206064491347909369911515301019367711551352591990261320383329288164577799740443242050242319267457621744807851983932903020081029321152325175250685866007841518940360280269649423980138752509028919270696197406591840726262868909999601238346887569491166411930108771076009573412594100219771074212035289275491573364890832367256854827355325731308226389028814609823679403212837077171147035094962722853937529780881806452156815760851836710785281112178566572142070924792670573967021943625926183861042230278394450084283686782710687142035589512463860007382666540574865786548090984873591052303316826223089810233823833877818493413413377572125316440837829248059997597530413074225936022537356928726861032836482495816729317138037356704312711814039586229918016418907376961773423879993723686730471541871754763457516922397978666764180907493617108196535775671577122375548642715864362660363698285254692252450789495296857844775409285832067120397741225920809730915094640238325092213217491635025536097960140990339793121105117908393671593840606430927286507282838120710540761234699189422511628632095218354056738982111107254470000373451953905544838296347383706816543780729267523585541214385956448406268928721934984154648198940685892036868554606054558448653750977153318569536525693630516086917674823412432181461884413411201293004004992015882876179775802939973661220145456423636324708339384632070192417332964444202
```

×

Problem Loading...

Note Loading...

Set Loading...