Let \(f\) be a continuous and differentiable function in \((x_1,x_2)\). And the following conditions hold for it: \[\begin{cases} f(x) \ f'(x) \geq x \ \sqrt{1-((f(x))^4} \\ \displaystyle \lim_{x \to x_1^+} ((f(x))^2=1 \\ \displaystyle \lim_{x \to x_2^-} ((f(x))^2=\frac{1}{2} \end{cases}\]

Find the minimum value of \((x_1^2-x_2^2)\)

Note : \(f'(x)=\dfrac{df(x)}{dx}\)

×

Problem Loading...

Note Loading...

Set Loading...