Obviously it's fifty

Logic Level 4

\[ \large{\begin{array}{ccccccc} &&T & W & E& N & T&Y\\ &&T & W & E& N & T&Y\\ &&T & H & I& R & T&Y\\ +& &T & H & I& R & T&Y\\ \hline &H&U & N & D& R & E&D\\ \hline \end{array}} \]

Above shows a cryptarithm such that each letter represent a distinct single non-negative integers with \(T\) and \(H\) are non-zero. Find the value of the sum of the two 6-digit number: \(\overline{TWENTY} + \overline{THIRTY} \).

×

Problem Loading...

Note Loading...

Set Loading...