\((\text{i})\) Use algebraic division to express \(\dfrac{x^3-2x^2-4x+13}{x^2-x-6}\) in the form \(Ax+B+\dfrac{Cx+D}{x^2-x-6}\), where \(A\), \(B\), \(C\) and \(D\) are constants.

\((\text{ii})\) Hence find \[\large \int _{ 4 }^{ 6 }{ \frac { x^{ 3 }-2x^{ 2 }-4x+13 }{ x^{ 2 }-x-6 } } \, dx\] giving your answer in the form \(a+ \ln b\).

**Input \(ab\) as your answer.**

×

Problem Loading...

Note Loading...

Set Loading...