\[\int_0^{\frac{\sqrt{2} }{2} } \frac{\arcsin x}{x} dx = \frac{a}{b}G +\frac{c}{d}\pi^k \ln(m),\]

where \(a,b,c,d,k,m\) are positive integers and \(\gcd(a,b)=\gcd(c,d)=1\), and \(G\) is the Catalan constant.

Find \(a+b+c+d+k+m\).

**Note:** The Catalan constant \(G\) is defined by \[G=\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2}. \]

×

Problem Loading...

Note Loading...

Set Loading...