If \[\int_0^1 \frac{1-x}{1-x^6}(\ln x)^4 \ \mathrm{d}x= \frac{a\pi^k}{b\sqrt{c}} + \frac{d\zeta(5)}{e} \] Where \(a,b,c,d,e,k\) are positive integers and \(c\) is not divisible by any perfect square. Find \(a+b+c+d+e+k\)

**Details and assumptions :** \[\zeta(5) = \sum_{k=1}^{\infty} \frac{1}{k^5} .\]

×

Problem Loading...

Note Loading...

Set Loading...